Self-Recognition Mechanism between Skin and Suckers Prevents Octopus Arms from Interfering with Each Other

نویسندگان

  • Nir Nesher
  • Guy Levy
  • Frank W. Grasso
  • Binyamin Hochner
چکیده

Controlling movements of flexible arms is a challenging task for the octopus because of the virtually infinite number of degrees of freedom (DOFs) [1, 2]. Octopuses simplify this control by using stereotypical motion patterns that reduce the DOFs, in the control space, to a workable few [2]. These movements are triggered by the brain and are generated by motor programs embedded in the peripheral neuromuscular system of the arm [3-5]. The hundreds of suckers along each arm have a tendency to stick to almost any object they contact [6-9]. The existence of this reflex could pose significant problems with unplanned interactions between the arms if not appropriately managed. This problem is likely to be accentuated because it is accepted that octopuses are "not aware of their arms" [10-14]. Here we report of a self-recognition mechanism that has a novel role in motor control, restraining the arms from interfering with each other. We show that the suckers of amputated arms never attach to octopus skin because a chemical in the skin inhibits the attachment reflex of the suckers. The peripheral mechanism appears to be overridden by central control because, in contrast to amputated arms, behaving octopuses sometime grab amputated arms. Surprisingly, octopuses seem to identify their own amputated arms, as they treat arms of other octopuses like food more often than their own. This self-recognition mechanism is a novel peripheral component in the embodied organization of the adaptive interactions between the octopus's brain, body, and environment [15, 16].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroethology: Self-Recognition Helps Octopuses Avoid Entanglement

How an octopus performs complex movements of its eight sucker-studded arms without entanglement has been a mystery. A new study has found that self-recognition of the octopus's skin by its suckers inhibits reflexive grasping of its own arms, simplifying the mechanisms needed to generate intricate arm behavior.

متن کامل

Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods.

Octopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g., octopus eggs) without damaging them and to provide strong, reversible adhesion forces to anchor the octopus to ha...

متن کامل

The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers

The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ...

متن کامل

Octopus-Inspired Innovative Suction Cups

Octopus show great adhesion capabilities thanks to their suckers covering their ventral side of their arms. Starting from biological investigation, we identified preliminary specifications for the design of innovative artificial suction cups, which could be used in the field of soft robotics. The main features of the biological sucker are maintained as leading criteria for the choice of the act...

متن کامل

Seasonal Variations of Fat and Fatty Acid Composition in Muscle Tissues of Mediterranean Octopuses

 The effects of seasons on lipid and fatty acid profiles of muscle types (mantle and arm) of Mediterranean octopuses (common octopus-Octopus vulgaris and musky octopus-Eledone moschata) were investigated. The results showed that lipid levels ranged from 0.75% to 1.60% in both muscle types of octopuses which were considered as lean. Lipid levels in mantle tissues of both octopus species w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014